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The treatment of Osborne-Mendel rats with ethanol in drinking water for 2 weeks resulted in a 3-fold increase of hepatic microsomal hydroxylation
of both p-nitrophenol and aniline, two substrates considered highly selective for P4502E1. No other forms of P450 seemed to be affected. These
results, confirmed by the immunoblot analysis of microsomal protein, showed an induction of P4502E1. The levels of total covalent binding to micro-
somal phospholipid due to 14CHC13 reactive intermediates in ethanol-pretreated microsomes were identical to those measured in microsomes from
untreated rats at any P02. The distribution of radioactivity obtained after transmethylation of the adducts of 14CHCI3 intermediates with microsomal
phospholipids (PL) indicated that binding to fatty acyl chains (due to .CHCI2 radicals) increased with decreasing P02. On the
contrary, the binding to polar heads due to phosgene decreased. The ethanol treatment did not affect binding to either PL moieties. These results
indicated that, in our experimental conditions, the in vitro production of both oxidative and reductive intermediates of CHCI3 in the liver of Osborne-
Mendel rats were not influenced by ethanol consumption.-Environ Health Perspect 1 02(Suppl 9):25-30 (1994)
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Introduction

The potentiation of CHCl3-induced hepa-
totoxicity in rodents by ethanol (1) and
other aliphatic alcohols (2,3), ketones and
ketogenic compounds (4-8) is well known.

Various mechanisms have been pro-

posed in order to explain this effect, such as

increased absorption in the intestine (9),
depletion of liver GSH (10,11), inhibition
of hepatocellular regeneration and hepa-
tolobular restoration (3,7), and hepatic
hypermetabolism (12). However, the lead-
ing hypothesis refers to cytochrome P450
induction, responsible for an increase in
CHC13 metabolism (6,13-15). The poten-
tiating effects among alcohols and ketones
differ significantly; this finding has been
related to their qualitatively and quantita-
tively different capacities to induce various
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P450 isoenzymes (16). The involvment of
P4502B1/2 has been evidenced (14) but
much attention was drawn by P4502E1
(15) since it is the main ethanol- and ace-
tone-inducible form (17) able to catalyze
CHC13 biotransformation (13).

Until recently, studies on the associa-
tion of the enhancement of CHC13-
induced hepatotoxicity with its metabolism
were related only to the detection of the
CHC13 oxidation reactive intermediate,
phosgene (6,14). No data are reported on
the role of the reductive pathway, through
which CHC13 is biotransformed to radical
species (.CHCI2) (18,19), able to bind
covalently to cellular structures (20,21).

Due to the social relevance of ethanol,
to which most of human population can be
exposed, we decided to study its interaction
with CHC13, although this alcohol is not
the most effective potentiator of CHC13
hepatotoxicity. We investigated the effect
of ethanol pretreatment on the P450-
dependent drug-metabolizing system in
Osborne-Mendel hepatic microsomes.
Then we investigated the effect produced
by the same pretreatment on both oxida-
tion and reduction pathways of CHC13
metabolism, using a CHC13 concentration
(5 mM) at which both metabolic pathways
are expressed (21).

Materials and Methods
Chemicals
(14C)-Chloroform (3.6 mCi/mmole, radio-
chemical purity 99%) was obtained from
New England Nuclear (Boston, MA).
Unlabeled chloroform (IR purity) was from
Merck (Darmstadt, Germany). Liquid
scintillation cocktails Aqualuma and
Lipoluma were purchased from Lumac
Systems A.G. (Basel, Switzerland).
Resorufin was obtained from Fluka (Buchs,
Switzerland). 7-Ethoxycoumarin was from
EGA-Chemie (Steinheim, Germany).
Benzphetamine was supplied by Upjohn
Co. (Kalamazoo, Michigan). Ethoxy-
resorufin and pentoxyresorufin were synte-

tized from resorufin by ethylation with
ethyl iodide and by pentylation with pentyl
iodide, respectively (22).

Enzymes and coenzymes were obtained
from Boehringer GmBh (Mannheim,
Germany). Nitrocellulose filters (0.45 pm),
erythromycin, testosterone (T), 4-
androsten-3,17-dione (17 OT), 16,-
hydroxytestosterone (16P3-OH), and
corticosterone were supplied by Sigma
Chemicals (St. Louis, MO). 2a-,25-, 6a-,
6p-, 7a- and 16ct-hydroxytestosterone
(16a-OH) were obtained from the Steroids
Reference Collection (DN Kirk, Depart-
ment of Chemistry, Queen Mary College,
London, England). Rabbit anti-rat P450
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2E1 polyclonal antibodies were purchased
from Oxygene (Dallas, Texas).

All other analytical grade chemicals were
obtained from common commercial sources.

Animals
Male Osborne-Mendel rats (180-200 g)
were from Zentralinstitut fur Versuchstier-
zucht (Hannover, Germany). They were
maintained on a 12-hr light cycle and pro-
vided food and water ad libitum for 1 week
and then administered 15% (vol/vol)
ethanol in drinking water for 2 weeks.
Liver microsomal preparation were
obtained as previously described (23).

Table 1. Effect of ethanol administration on monooxy-
genase activities in hepatic microsomes from Osborne-
Mendel rats.

Enzymatic Control Ethanol-treated
activity microsomes microsomes

P450a 0.6±0.08 0.54±0.11
b5a 0.14±0.01 0.16±0.03
APNDb 5.3 ± 0.91 4.7 ± 0.6
BZNDb 4.9 ± 0.46 5.7 ± 0.80
ErNDb 0.64 ± 0.08 0.50 ± 0.13
AnOHb 0.49 ± 0.12 1.10 ± 0.21
pNPHb 0.49 ± 0.006* 1.51 ± 0.008*
ECODb 0.55 ± 0.13 0.83 ± 0.15
ERODb 0.11 ± 0.03 0.11 ± 0.02
PRODC 7.6 ± 2.5 6.0 ± 1.0

anmole/mg proteins. bnmole/min/mg proteins. Cpmole/
min/mg proteins. Abbreyiations: P450, cytochrome
P450; b5, cytochrome b5; APND, aminopyrine N-
demethylase; BZND, benzphetamine N-demethylase;
ErND, erythromycine N-deethylase; AnOH, aniline
hydroxylase; pNPH, p-nitrophenol hydroxylase; ECOD,
7-ethoxycoumarin-0-deethylase; EROD, ethoxyresorufin
O-deethylase; PROD, pentoxyresorufin-0-depentylase.
*Statistically significant values (p<0.001).

Table 2. Hydroxylation of testosterone by liver micro-
somes of control and ethanol-treated Osborne-Mendel
rats.a

Control Ethanol-treated
Metabolites microsomes microsomes

6a-OH 0.0012 ± 0.007 0.018 ± 0.01
7a-OH 0.028 ± 0.01 0.025 ± 0.01
65-OH 0.16±0.04 0.12±0.03
16a-OH 0.31 ± 0.11 0.34 ± 0.09
16p-OH 0.014 ± 0.006 0.010 ± 0.004
2a-OH 0.25 ± 0.05 0.22 ± 0.03
2p-OH 0.032 ± 0.008 0.024 ± 0.007
17-OT 0.33 ± 0.06 0.25 ± 0.05
Total 1.13 ± 0.29 1.01 ± 0.23
a Results are expressed as nmole/min by mg protein.
Values represent the mean ± standard deviation of four
experiments performed with different microsomal
preparations. Incubations were carried out at 37°C for
15 min with 1 mg/ml microsomal proteins.

Biochemical Assays
Microsomal protein content was deter-
mined by the method of Oyama and Eagle
(24), using bovine serum albumin as a
standard. Cytochrome P450 and
cytochrome b5 (b5) were measured by the
method of Omura and Sato (25). The
activities for the N-demethylation of
aminopyrine (APND), benzphetamine
(BZND), and erytromycine (ErND) were
assayed by measuring the formation of
formaldehyde (26). Aniline hydroxylase
(AnOH) and p-nitrophenol hydroxylase
(pNPH) were determined according to Ko
et al. (27) and Reinke and Moyer (28).
The 7-ethoxycoumarin- O-deethylase
(ECOD) activity was assayed by the
method of Aitio (29). Ethoxyresorufin-O-
deethylase (EROD) and pentoxyresorufin-
O-depentylase (PROD) activities were
determined by measuring the formation of
the corresponding hydroxy products (30).

Testosterone hydroxylase was assayed
according to an HPLC method as de-
scribed by Platt et al. (31).

Lipids were extracted according to
Folch et al. (32).

Gel Electophoresis and
Immunoblotting
SDS-PAGE was carried out using the dis-
continuous system of Laemmli (33), using
a 1.5-mm thick gel with 3 and 7.5% acry-
lamide in the stacking and separation gel.
Proteins were transferred from the slab gel
to the nitrocellulose filters, following the
method of Towbin et al. (34). Immuno-
detection of P4502E1 was performed using
rabbit polyclonal antibodies.

In Vtn Activation of 14C-Chloroform
The standard incubation mixture con-
tained microsomal protein (2 mg/ml), G6P
(2 mM), MgCI2 (2 mM) G6P-dehydroge-
nase (1 U/ml), EDTA (1 mM), NADP
(0.2 mM) and 14C-chloroform 5 mM in
50 mM Tris-HCl buffer, pH7.4. When
anoxic conditions were required, the incu-
bation mixture also contained an oxygen
scavenging enzyme system. Mixture to be
incubated under hypoxic (about 1% P02)
or anoxic conditions were flushed with
ultrapure N2 for 20 min; a mixture of 02
N2 (5:95) was flushed for 20 min when
incubations were to be carried out at 5%
P02- A detailed description of the proce-
dure was reported previously (20).
Covalent Binding of 14C-Chloroform
Metabolites
Covalent binding of 14C-label to microso-
mal lipid was measured after 20 min incu-

bation according to the method of Uehleke
(35), with minor modifications (20). The
regioselective binding of 14C-chloroform
metabolites to microsomal phospholipids
(PL)-polar heads and/or fatty acyl chains
was determined after the acid catalyzed
transmethylation of PL-adducts, as
described in detail by De Biasi et al. (36).

Briefly, the lipid extract was dissolved
in 1 ml of anhidrous methanol: benzene:
H2SO4 (75:25:1), and vigorously shaken
for 1 hr at 70°C. The reaction mixture was
cooled in an ice bath, then 2 ml petroleum
ether (bp 40°-70°) and 1 ml 0.26M
K2HPO4 were added. After 10 min vigor-
ous shaking, the mixture was centrifuged
(3000 rpm, 10 min). The lower aqueous

AB
Figure 1. Immunoblot analysis of hepatic micro-
somes from control (lane A) and ethanol-treated rats
(lane B). Microsomes (12 pg protein loaded in each
lane) were subjected to SDS-PAGE electrophoresis
followed by immunoblotting.
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layer, containing the hydrophylic polar
heads, was transferred into a plastic vial
containing 17 ml Aqualuma. The upper
organic phase, containing the PL fatty acid
methyl esters, was washed twice and then a
2-ml aliquot was transferred into a plastic
vial containing 10 ml Lipoluma.

Calculations
Data obtained with control and ethanol
treated microsomes were compared by
means of the Student's t-test.

Results
Effect ofEthanol on Hepati Drug
Metabolizing Enzymes
The effect of ethanol administration on
hepatic cytochrome P450 and b5 content
and some monooxygenase activities is
shown in Table 1. With respect to micro-
somes from control animals, the ethanol
treatment resulted in a 2.4- and a 3-fold
increase of the oxidation rates of p-nitro-
phenol and aniline, two substrates consid-
ered to be highly selective for P4502E1. All
the other monooxygenase activities, as well
as the amount of both P450 and
cytochrome b5, did not exhibit any signifi-
cant difference between control and
ethanol-treated rat liver microsomes.

To investigate more specifically the
effect of ethanol administration to
Osborne-Mendel rats on the constitutive
P450 isozymes, the metabolism of an
endogenous substrate, such as T was stud-
ied. Results presented in Table 2 show that
no significant differences were present
between control and ethanol-treated
hepatic microsomes either in the total level
of T-hydroxylation or in the production of
any specific T-metabolite, including 16p-
OH and 17 OT, which are associated,
respectively, with P450 2B1/2 (the major
PB-inducible P450 isoenzyme) and P450
2C 11 (the most relevant constitutive P450
form in the rat liver).

The immunoblot analysis of microso-
mal protein Figure 1 using rabbit anti-rat
P4502E1 polyclonal IgG, evidenced the
absence of any reaction in control micro-
somes for lane A, whereas a band is present
in lane B where ethanol-treatred rat liver
microsomes were loaded.

Effect ofEthanol on Chloroform
Metabolism
The levels of total covalent binding to
microsomal phospholipids due to 14CHCI3
reactive intermediates in ethanol-pretreated
Osborne-Mendel rat liver microsomes
were almost indentical to those measured

in microsomes from untreated rats at any
tested P02 (Figure 2).

With the transmethylation of the PL-
adducts of Osborne-Mendel rat liver
microsomes, it is possible to selectively
quantitate the production of oxidation and
reduction intermediates of CHC13 metabo-
lism, which exhibit a typical regioselectivity
in their attack to PL. Indeed, while 'CHCl2
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radicals, reductively produced from
14CHCl3, preferentially bind to PL fatty
acyl chains (FC), the major product of
CHC13 oxidation, phosgene, has in PL
polar heads (PH) its main target (36). In
Figure 3, radioactivity associated to PH,
expression of CHC13 oxidation, measured
in control and in ethanol-treatred Osborne-
Mendel rat liver microsomes is shown. It
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Figure 2. Oxygen concentration dependence of in vitro covalent binding of CHCI3 metabolites to liver microsomal
phospholipids. Incubations were carried out at 5 mM "CHC13 with control (filled bars) and ethanol-treated (dotted
bars) Osborne-Mendel rats hepatic microsomes. Values represent means and standard deviations calculated from
three different microsomal preparations.
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Figure 3. Effect of ethanol-pretreatment on in vitro covalent binding of CHCI3 metabolites to liver microsomal Pl
polar heads. Incubations were carried out at 5 mM "CHCI3, at different 02 tensions both with control (filled bars)
and ethanol treated (dotted bars) Osborne-Mendel rat hepatic microsomes. Values represent means and standard
deviations calculated from three different microsomal preparations. For the statistically significant difference
between control and treated microsomes, the level of p is reported.
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Figure 4. Effect of ethanol-pretreatment on in vitro covalent binding of CHCI3 metabolites to liver microsomal PL
fatty acyl chains (for details see Figure 3).

appears that binding to PH increased on

increasing pO2, but no differences were

present between control and treated micro-
somes; only values measured at 1% pO2
exhibited some degree of statistical signifi-
cance. The binding to FC, considered as an

index of CHC13 reduction in control and
treated microsomes is shown in Figure 4.
The opposite dependence on pO2 with
respect to PH was evidenced: the levels of
radioactivity associated to FC decreased on

increasing pO2. Moreover, levels measured
both in control and in treated microsomes
were almost identical. The slight statistical
significance of the difference between values
at 5% pO2 was not considered relevant. As
a consequence, the relative contribution of
the two different CHC13 metabolites to the
almost similar levels of PL total covalent
binding measured in different oxygenation
conditions (Figure 2), markedly varied with
P02 (Figures 3 and 4). Indeed, the ratios of
radioactivity associated to PH versus

radioactivity to FC (PH/FC ratios) were

0.28, 0.21, 1.34, and 38.5 in control
microsomes. The ratios were 0.31, 0.36,
2.77 and 4.65 in ethanol treated micro-
somes, at increasing P02 from 0 to 1, 5 and
20%, respectively.

Discussion
Similar to previous findings with rabbits,
(37,38) hamsters (39), and different strains
of mice and rats (40,41), the present results
clearly indicate that the oral administration
of ethanol to Osborne-Mendel rats,
resulted in the induction of P4502E1. In
fact, the significant increase of the hepatic
P4502E1-linked monooxygenase activities
was confirmed by the immunodetection in
microsomes from ethanol-treated rat liver,
of a band corresponding to P4502E1. That
band was absent in hepatic microsomes
from control Osborne-Mendel rats.

No other forms of P450 seemed to be
significantly affected by ethanol pretreat-
ment, as demonstrated by the unchanged
metabolism of either exogenous and
endogenous P450 substrates.

Previous works evidenced that both
P4502B1/2 and P4502E1 are involved in
CHC13 metabolism, which can therefore be
affected by pretreatment with PB, alcohols
and ketones (6,13-15,42).

Although our pretreatment procedure
resulted in the induction of P4502E1, in
hepatic microsomes from Osborne-Mendel
rats, no substantial quantitative changes
were detectable in chloroform metabolism,

.which is expressed as 14CHCl3-derived
reactive intermediates covalently bound to
microsomal PL (Figure 2).

Moreover, considering the typical
regioselectivity in the attack to PL exhib-
ited by oxidation and reduction intermedi-
ates of CHCl3 (36), it appeared that
ethanol was also uneffective in qualitatively
modifying the pattern of CHCl3 metabo-
lism (Figures 3 and 4). Indeed, the two
pathways are similarly expressed in control
and ethanol-treated microsomes.

The relative contributions of P450
2B1/2 and P450 2E1 appear to be depen-
dent on the substrate concentration.
Indeed, it has been suggested (42) that at
low chloroform concentrations (about 0.1
mM) its metabolism i catalyzed mainly by
P450 2E1 (13,15,42), while P450 2B1/2
may be significantly responsible for CHC13
activation at a higher haloform concentra-
tion of 5 mM (14). Data on the effects of
ethanol on chloroform metabolism at high
substrate concentration were only based on
the detection of chloroform oxidation
products (14). Our data indicate that both
the oxidative and the reductive metabolism
of CHCl3 are not affected by P450 2E1 at
5 mM CHC13, a concentration at which
the two pathways are expressed (21).

One of the most relevant features of the
CHC13 metabolism is that the oxygenation
of the incubation mixture was of major
importance in determining the oxidative
and/or reductive nature of CHCl3 activa-
tion (21). In this paper, we show that at 1
and 5% P02, representing the physiologi-
cal range of 02 tensions typical of the liver
(43), the two pathways are concurrently
present. It appeared also that in our in vitro
conditions the shift from oxidation to
reduction occurred just in this range Of
P02. Indeed the relative magnitude of the
binding to PH and FC was reversed mostly
between 5 and 1% P02 (Figures 3 and 4).

Rats treated with ethanol showed a
higher rate of 02 consumption in the liver
than control rats (44). This phenomenon
may increase the state of physiological
hypoxia of the liver and suggests that the
consequent alteration of the delicate bal-
ance between the oxidative and the reduc-
tive activation of CHCl3 may concur in the
potentiation ofCHCl3 toxicity.

Environmental Health Perspectives

TESTAI ETAL.

a
nmoll 14C/mg PL

6 F
4. +

4

21

o0

_
_

:. ':- ::.
:..-::.

.. ...... .- ,._- .. .-.
_. .-

-:,. .._-

_-......
.. :._.. .:'.'.- .'

0 s

28



EFFECT OF ETHANOL ON CHC13 ACTIVATION

REFERENCES

1. Kutob SD, Plaa GL. The effect of acute ethanol intoxication
on chloroform-induced liver damage. J Pharmacol Exp Ther
135:245-251 (1962).

2. Traiger JG, Plaa GL. Chlorinated hydrocarbon toxicity poten-
tiation by isopropyl alcohol and acetone. Arch Environ Health
28:276 (1974).

3. Ray SD, Mehendale HM. Potentiation of CC1 and CHCI
hepatotoxicity and lethality by various alcohols. fundam Appl
Toxicol 15:429-440 (1990).

4. Hewitt WR, Miyajima H, Cote MG, Plaa GL. Modification of
haloalkane-induced hepatotoxicity by exogenous ketones and
metabolic ketosis. Fed Proc 39:3118-3123 (1980).

5. Hewitt WR, Brown EM, Plaa GL. Acetone-induced potentia-
tion of trihalomethane toxicity in male rats. Toxicol Lett
16:285-296 (1983).

6. Hewitt LA, Valiquette C, Plaa GL. The role of biotransforma-
tion-detoxication in acetone-, 2-butanone, and 2-esanone-
potentiated chloroform-induced hepatotoxicity. Can J Physiol
Pharmacol 65:2313-2318 (1987).

7. Mehendale HM. Mechanism of the lethal interaction of
chlordecone and CC14 at non toxic doses. Toxicol Lett
49:215-241 (1989).

8. Brown EM, Hewitt WR. Dose-response relationships in
ketone-induced potentiation of chloroform hepato- and
nephrotoxicity. Toxicol Appl Pharmacol 76:437-453 (1984).

9. Lamson PD, Minot AS, Robbins BH. The prevention and
treatment of CC14 intoxication. J Am Med Assoc 90:345-349
(1928).

10. Estler CJ, Ammon HPT. Enzyme in der leber Weisser Mause
nach einmaliger alkoholgabe. Med Pharm Exp 15:299-305
(1966).

11. MacDonald CM, Dow J, Moore MR. A possible protective
role for sulfhydryl compounds in acute alcoholic liver injury.
Biochem Pharmacol 26:1529-1533 (1977).

12. Israel Y, Kalant H, Orrego H, Khanna JM, Videla L, Phillips
JM. Experimental alcohol-induced hepatic ne,crosis: suppres-
sion by propylthiouracil. Proc Natl Acad Sci USA
72:1137-1141 (1975).

13. Sato A, Nakajima T, Koyama Y. Effects of chronic ethanol
consumption on hepatic metabolism of aromatic and chlori-
nated hydrocarbons in rats. BrJ Ind Med 37:382-386 (1980).

14. Branchflower RV, Schulick RD, George JW, Pohl LR.
Comparison of the effects of methyl-N-butyl ketone and phe-
nobarbital on rat liver cytochromes P450 and the metabolism
of chloroform to phosgene. Toxicol Appl Pharmacol
71:414-421 (1983).

15. Brady JF, Li DC, Ishizaky H, Lee M, Ning SM, Xiao F, Yang
CS. Induction of cytochromes P450 2E1 and P450 2B1 by sec-
ondary ketones and the role of P450 2E1 in chloroform metab-
olism. Toxicol Appl Pharmacol 100:342-349 (1989).

16. Kobusch AB, Plaa GL, Du Souich P. Effects of acetone and
methyl n-butyl ketone on hepatic mixed-function oxidase.
Biochem Pharmacol 38:3461-3467 (1989).

17. Ryan DE, Ramanthan L, Iida S, Thomas PE, Haniu M,
Shively JE, Lieber CS, Levin W. Characterization of a major
form of rat hepatic microsomal P450 induced by isoniazide. J
Biol Chem 260:6385-393 (1985).

18. Tomasi A, Albano E, Biasi F, Slater TF, Vannini V, Dianzani
MU. Activation of chloroform and related trihalomethanes to
free radical intermediates in isolated hepatocites and in the rat
in vivo as detected by the ESR-spin trapping technique. Chem-
Biol Interact 55:303-316 (1985).

19. Antonelli A, Di Domenico A, Testai E, Vittozzi L, Volpi F.
Reactive intermediates produced in the reductive metabolism
of CHCl3. In: Abstracts of ISSX 2nd European Symposium on
Foreign Compound Metabolism, March 29-April 3, 1987,
Frankfurt Am Main. 1987;38.

20. Testai E, Di Marzio S, Vittozzi, L. Multiple activation of chlo-
roform in hepatic microsomes from uninduced B6C3F1 mice.

Toxicol Appi Pharmacol 104:496-503 (1990).
21. Testai E, Gemma S, Vittozzi L. Bioactivation of chloroform in

hepatic microsomes from rodent strains susceptible or resistant
to CHC1 carcinogenicity. Toxicol Appl Pharmacol
114:197-263 (1992).

22. Klotz AV, Stogeman JJ, Walsh C. An alternative 7-ethoxyre-
sorufin assay: a continuous visible spectrophotometric method
for measurement of cytochrome P450 monooxygenase activity.
Anal Biochem 140:138-145 (1984).

23. Testai E, Vittozzi L. Biochemical alterations elicited in rat liver
microsomes by oxidation and reduction products of chloroform
metabolism. Chem-Biol Interact 59:157-171 (1986).

24. Oyama VI, Eagle H. Measurement of cell growth in tissue cul-
ture with a phenol reagent (Folin-Ciocalteus). Proc Soc Exp
Biol Med 91:305-307 (1956).

25. Omura T, Sato R. The carbon monoxide binding pigment of
liver microsomes. J Biol Chem 239:2370-2378 (1964).

26. Tu YY, Yang CS. High affinity nitrosamine dealkylase system
in rat liver microsomes and its induction by fasting.
43:623-629 (1983).

27. Ko IY, Park SS, Song BJ, Patten C, Tan Y, Hah YC, Yang CS,
Gelboin HV. Monoclonal antibodies to ethanol-induced rat
liver cytochrome P450 that metabolizes aniline and
nitrosamines. Cancer Res 47:3101-3106 (1987).

28. Reinke LA, Moyer MJ. p-Nitrophenol hydroxylation: amicro-
somal oxidation which is higly inducible by ethanol. Drug
Metab Dispos 13:548-552 (1985).

29. Aitio A. A simple and sensitive assay of 7-ethoxycoumarin
deethylation. Anal Biochem 85:488 (1978).

30. Lubert RA, Mayer RT, Cameron JW et al. Dealkylation of
pentoxyresorufin: a rapid and sensitive assay for measuring
induction of cytochrome(s) P450 by phenobarbital and other
xenobiotics in rat. Arch Biochem Biophys 238:43-48 (1985).

31. Platt KL, Molitor E, Doehmer J, Dogra S, Oesch F.
Genetically engineered V79 Chinese hamster cell expression of
purified cytochrome P450 2Bl monooxygenase activity. J
Biochem Toxicol 4:1-6 (1989).

32. Folch J, Lees M, Sloane-Stanley GM. A simple method for the
isolation and purification of total lipids from animal tissues. J
Biol Chem 226:497 (1957).

33. Laemmli UK. Cleavage of structural proteins during the assem-
bly of the head of the bacteriophage T4. Nature 227:680
(1970).

34. Towbin H, Stachelin P, Gordom J. Electrophoretic transfer of
proteins from polyacrylamide gels to nitrocellulose sheets: pro-
cedure and some applications. PNAS 76:4350-4354 (1979).

35. Uehleke H. The model system of microsomal drug activation
and covalent binding to endoplasmic proteins. Proc Eur Soc
Study Drug Toxic 15:119-129 (1973).

36. DeBiasi A, Sbraccia M, Keizer J, Testai E, Vittozzi L. The
regioselective binding of CHC13 metabolites to microsomal
phospholipids. Chem-Biol Interact 85:229-242 (1992).

37. Ueng T-H, Friedman FK, Miller H, Park SS, Gelboin HV,
Alvares AP. Studies on ethanol-inducible cytochrome P450 in
rabbit liver, lungs and kidneys. Biochem Pharmacol 36:
2689-2691 (1987).

38. Koop DR, Crump BL, Nordbolon GD, Coon MJ.
Immunochemical evidence for induction of the alcohol-oxidiz-
ing cytochrome P450 of rabbit liver microsomes by diverse
agents: ethanol, imidazole, trichloroethylene, acetone, pyrazole
and isoniazid. Proc Natl Acad Sci USA 82:4065-4069 (1985).

39. McCoy CD, Koop DR. Biochemical and immunochemical evi-
dence for the induction of an ethanol-inducible cytochrome
P450 isozyme in male Syrian golden hamsters. Biochem
Pharmacol 37:1563-1568 (1988).

40. Elves RG, Ueng T-H, Alvares AP. Comparative effects of
ethanol administration on hepatic monooxy- genases in rats
and mice. Arch Toxicol 55:258-264 (1984).

41. Smith BA, Gutmann HR. Differential effect of chronic ethanol

Volume 102, Supplement 9, November 1994 29



TESTAI ETAL.

consumption by the rat on microsomal oxidation of hepatocar-
cinogens and their activation to mutagens. Biochem Pharmacol
33:2901-2910 (1984).

42. Nakajima T, Elovaara E, Park SS, Gelboin HV, Vainio H.
Immunochemical detection of cytochrome P450 isoenzymes
induced in rat liver by n-hexane, 2-hexanone and acetonyT-ace-
tone. Arch Toxicol 65:542-547 (1991).

43. Kessler M, Lang H, Sina owitz E, Rink R, Hoper J.
Homeostasis of oxygen supply in liver and kidney. Adv Exp
Med Biol 37A:351 (1973).

44. Videla L, Bernstein J, Israel Y. Metabolic alterations produced
in the liver by chronic ethanol administration: increased oxida-
tive capacity. Biochem J 134:507-514 (1973).

30 Environmental Health Perspectives


